

MIST: Multiple Instance Self-Training Framework for Video Anomaly Detection

Jia-Chang Feng

Fa-Ting Hong

Wei-Shi Zheng

School of Computer Science and Engineering, Sun Yat-sen University

Peng Cheng Laboratory

Key Laboratory of Machine Intelligence and Advanced Computing, Mistry of Education of China

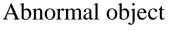
Pazhou Lab

Speaker: Jia-Chang Feng

2

Video Anomaly Detection (VAD)

- What is anomaly in the video?
 - Events that betray pre-defined patterns.
 - Events that catch the user's interest, especially those related to crime.



Strange action

Fighting

Frame No: = 008

Road Accident

Frame No: = 008

Video Anomaly Detection (VAD)

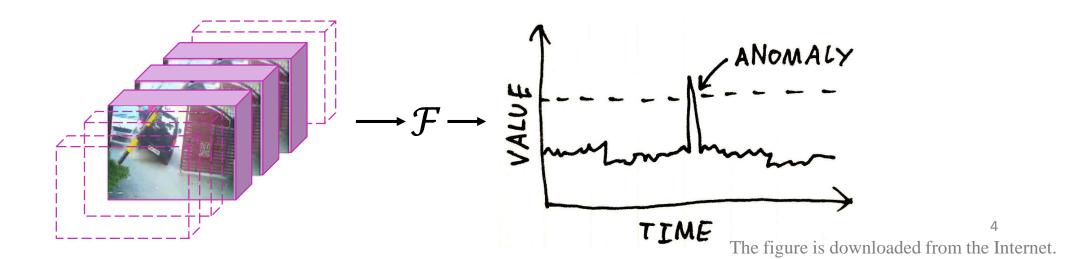
- Real-world applications of VAD
 - Intelligent surveillance systems
 - Traffic monitoring / Smart City
 - Industrial monitoring systems

https://www.techtoreview.com/upload/1583312149.jpeg

https://www.aindralabs.com/wp-content/uploads/2.png

Weakly Supervised VAD

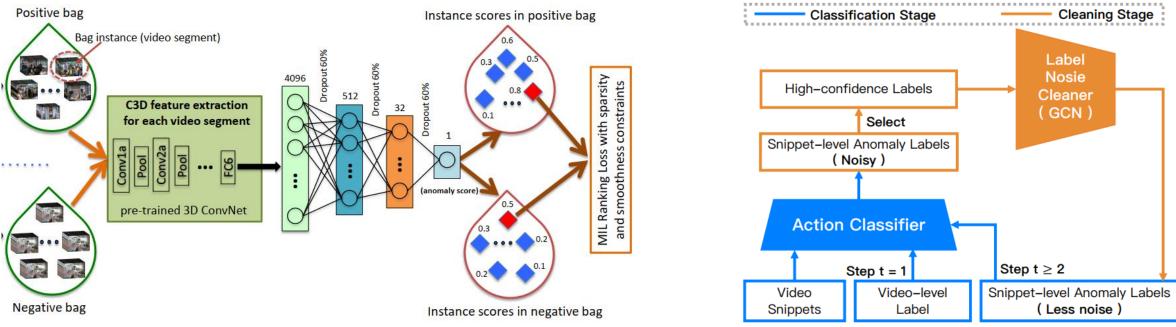
- Heavy annotation cost for fully supervised VAD
- Scene bias / Inflexibility for unsupervised VAD
- Formulation:
 - Given a binary video-level label for each training video [Abnormal / Normal]
 - Train a prediction function \mathcal{F} to predict frame-level anomaly scores



Weakly Supervised VAD

Weakly Supervised VAD

- Previous works
 - Encoder-agnostic: Train specific-designed detector only •
 - Encoder-based: Train both feature encoder and specific-designed detector ٠



 ${\mathcal F}$

E

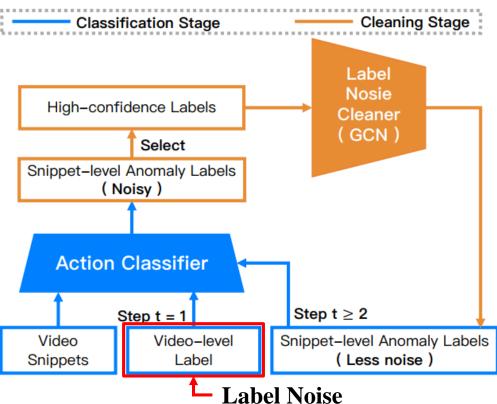
Π

Project Page

6

Weakly Supervised VAD

- Problems in previous encoder-based method [Zhong .et al, 2019]
 - Label noise is introduced in the first iteration.
 - High training computation cost
 - Multiple training iterations
 - High testing computation cost
 - 10-crop testing augmentation



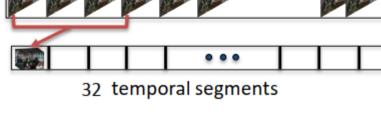
b) Samples of UCF-Crime

7

Multiple Instance Self-Training Framework

- Motivations
 - To minimize the domain gap lying between common videos and surveillance videos.
 - Small foreground
 - Not actor-centric
 - Blur
 - Online fine-grained anomaly detection
 - Spatial anomaly explanation/localization

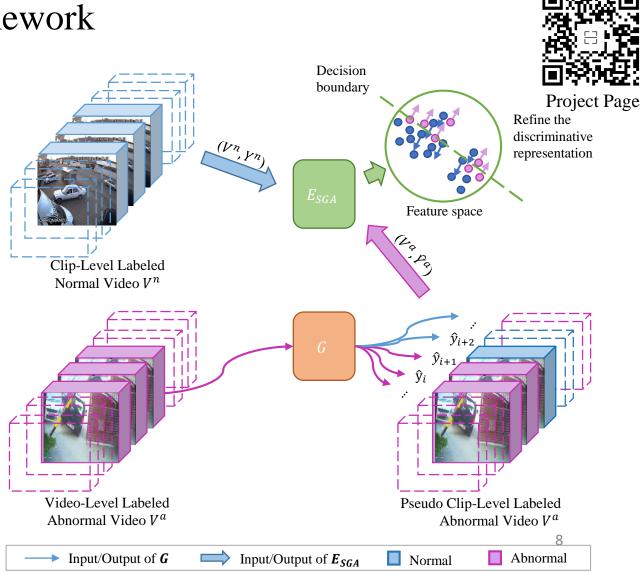
Anomaly video



a) Samples of Kinetices-400

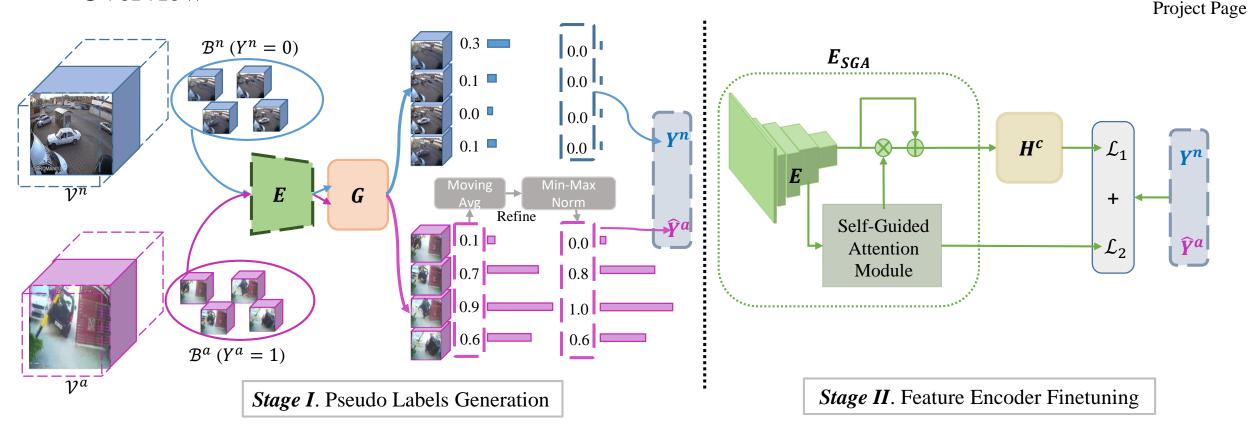
Multiple Instance Self-Training Framework

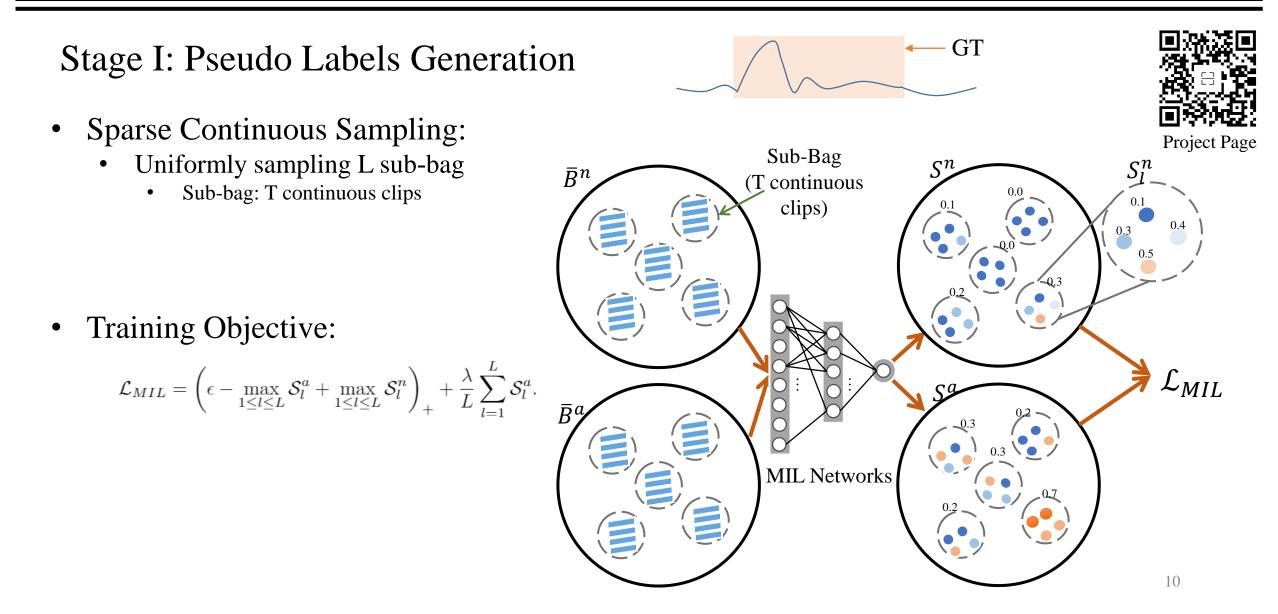
- Contributions:
 - An online fine-grained method for weakly supervised VAD.
 - An efficient way to finetune feature encoder with a two-stage framework.
 - **Sparse-continuous sampling strategy** for MIL-based pseudo label generator.
 - **Self-Guided Attention Module** to enhance the feature encoder.
 - MIST provide **spatial explanation** / **visualization** for anomalous events.



Multiple Instance Self-Training Framework

• Overview

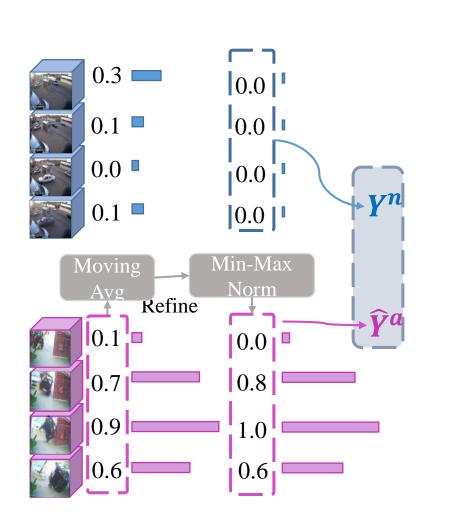




Stage I: Pseudo Labels Generation

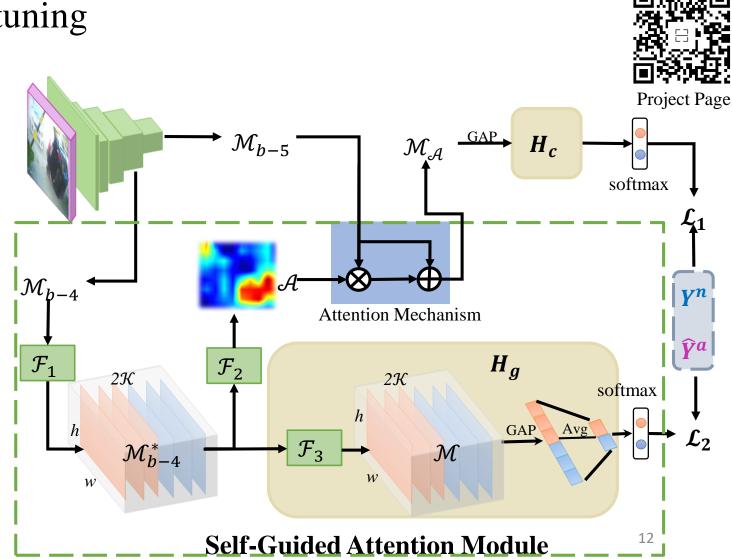
- Pseudo Labels Refinement
 - Moving Average Smoothing $\tilde{s}_i^a = \frac{1}{2k} \sum_{j=i-k}^{i+k} s_j^a$
 - Min-Max Normalization

$$\hat{y}_i^a = \left(\tilde{s}_i^a - \min \tilde{S}^a\right) / (\max \tilde{S}^a - \min \tilde{S}^a)), i \in [1, N]$$



Stage II: Feature Encoder Finetuning

- Self-Guided Attention Module:
 - Attention generation $\mathcal{A} = \mathcal{F}_2(\mathcal{F}_1(\mathcal{M}_{b-4}))$
 - Attention Mechanism $\mathcal{M}_{\mathcal{A}} = \mathcal{M}_{b-5} + \mathcal{A} \circ \mathcal{M}_{b-5}$
 - Indirect guidance by a guided classification head H_g to make \mathcal{M}_{b-4}^* more discriminative.

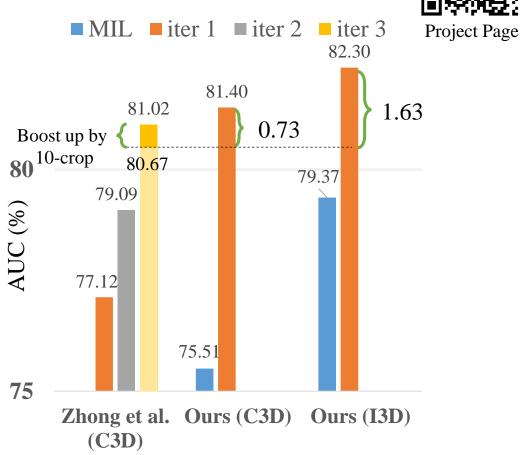


Stage II: Feature Encoder Finetuning **Project Page** Training Objective in Finetuning • \mathcal{M}_{b-5} • $\mathcal{L} = \mathcal{L}_1 + \mathcal{L}_2$ $\mathcal{M}_{\mathcal{A}}$ H_c • $\mathcal{L}_1, \mathcal{L}_2$: class-weighted cross-entropy softmax loss \mathcal{L}_{w} $\mathcal{L}_w = -w_0 y \log p - w_1 (1-y) \log(1-p),$ \mathcal{M}_{b-4} vn Attention Mechanism Ŷa \mathcal{F}_1 H_{g} \mathcal{F}_2 $2\mathcal{K}$ $2\mathcal{K}$ softmax h GAP Avg \mathcal{F}_3 62 \mathcal{M}_{b-4}^* \mathcal{M} W 13 Self-Guided Attention Module

Experimental Results

Method	Supervised	Grained	Encoder	AUC (%)	FAR (%)
Hasan et al. [7]	Un	Coarse	AE^{RGB}	50.6	27.2
Lu et al. [16]	Un	Coarse	Dictionary	65.51	3.1
SVM	Weak	Coarse	$C3D^{RGB}$	50	-
Sultani et al. [23]	Weak	Coarse	$C3D^{RGB}$	75.4	1.9
Zhang et al. [32]	Weak	Coarse	$C3D^{RGB}$	78.7	-
Zhu et al. [38]	Weak	Coarse	AE^{Flow}	79.0	-
Zhong et al. [35]	Weak	Fine	$C3D^{RGB}$	80.67*(81.08)	$3.3^{*}(2.2)$
Liu et al. [13]	Full(T)	Fine	$C3D^{RGB}$	70.1	-
Liu et al. [13]	Full(S+T)	Fine	NLN^{RGB}	82.0	-
MIST	Weak	Fine	$C3D^{RGB}$	81.40	2.19
MIST	Weak	Fine	$I3D^{RGB}$	82.30	0.13

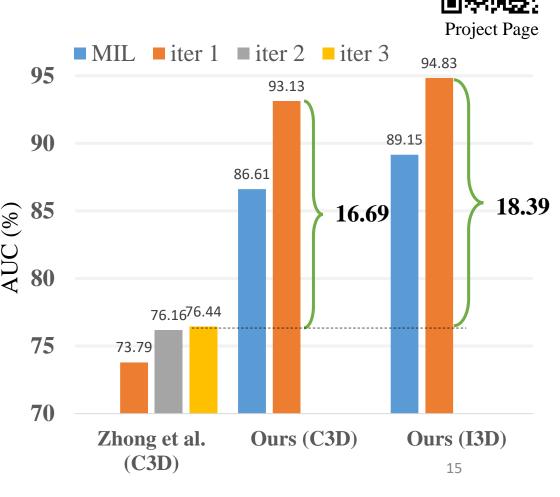
Table 1: Quantitative comparisons with existing online methods on UCF-Crime under different levels of supervision and fineness of prediction. The results in (\cdot) are tested with *10-crop*, while those marked by * are tested without.

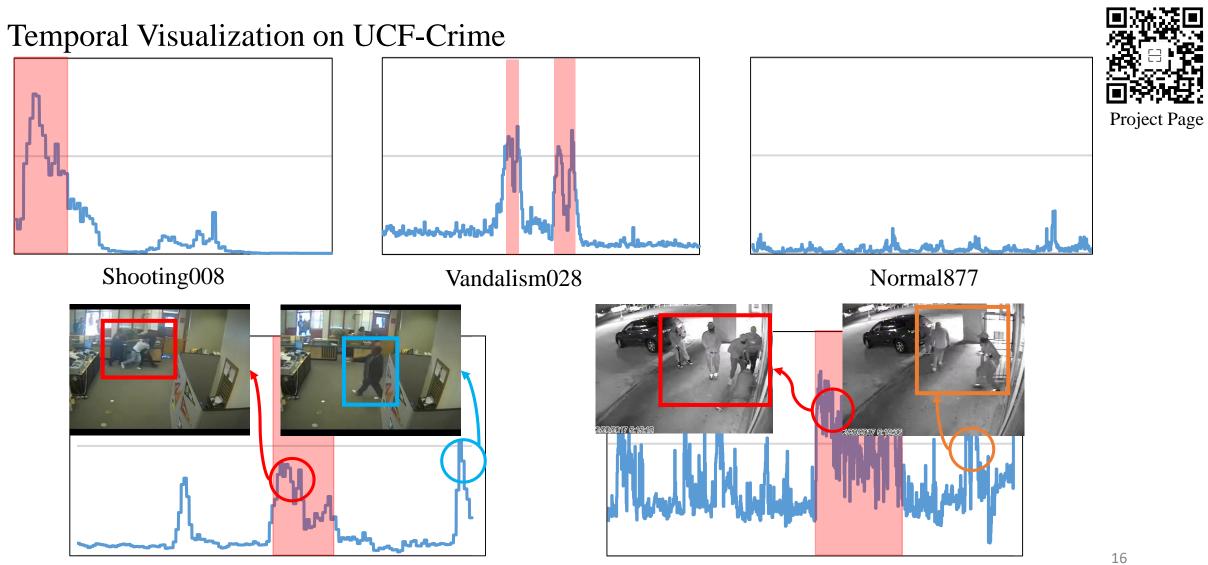


Experimental Results

Method	Feature Encoder	Grained	AUC (%)	FAR (%)	-
Sultani et al. [23]	$C3D^{RGB}$	Coarse	86.30	0.15	_
Zhang et al. [32]	$C3D^{RGB}$	Coarse	82.50	0.10	
Zhong et al. [35]	$C3D^{RGB}$	Fine	76.44	-	
AR-Net [27]	$C3D^{RGB}$	Fine	85.01^{*}	0.57^{*}	(%)
AR-Net [27]	$I3D^{RGB}$	Fine	85.38	0.27	Ľ
AR-Net [27]	$I3D^{RGB+Flow}$	Fine	91.24	0.10	VIIC (%)
MIST	$C3D^{RGB}$	Fine	93.13	1.71	_
MIST	$I3D^{RGB}$	Fine	94.83	0.05	_

Table 2: Quantitative comparisons with existing methods on ShanghaiTech. The results with * are re-implemented.





Arrest001

Burglary079

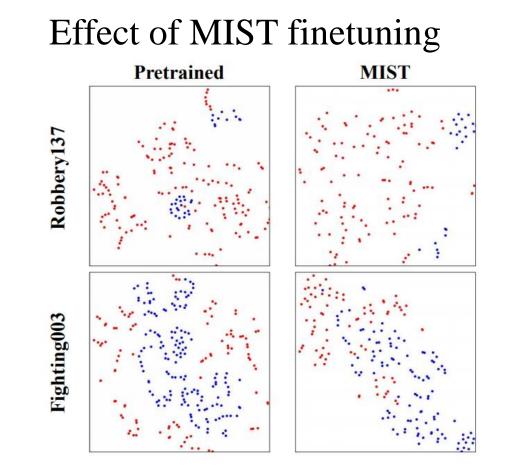


Figure 6: Feature space visualization of pretrained vanilla feature encoder **I3D** and the MIST fine-tuned encoder via t-SNE [18] on UCF-Crime testing videos. The red dots denote anomalous regions while the blue ones are normal.

Encoder-Agnostic	AUC (%)					
Methods	UCF-Crime			ShanghaiTech		
Methods	pretrained	MIST	Δ	pretrained	MIST	Δ
Sultani et al. [20]	78.43	81.42	+2.99	86.92	92.63	+5.71
Zhang et al. [28]	78.11	81.58	+3.47	88.87	92.50	+3.63
AR-Net [24]	78.96	82.62	+3.66	85.38	92.27	+6.89
Our MIL generator	79.37	81.55	+2.18	89.15	92.24	+3.09

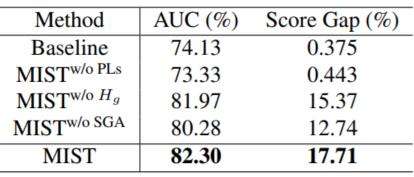
Table 3: Quantitative comparisons between the features from the pretrained vanilla feature encoder and those from MIST on UCF-Crime and ShanghaiTech datasets by adopting encoder-agnostic methods.

Ablation Studies

Dataset	Feature		ΔAUC	
Dataset	reature	Uniform	Sparse Continuous	(%)
UCF-Crime	$C3D^{RGB}$	74.29	75.51	+1.22
	$I3D^{RGB}$	78.72	79.37	+0.65
ShanghaiTech	$C3D^{RGB}$	83.68	86.61	+2.93
Shanghar reen	$I3D^{RGB}$	83.10	89.15	+6.05

Table 4: Performance comparisons of sparse continuous sampling and uniform sampling for MIL generator training.

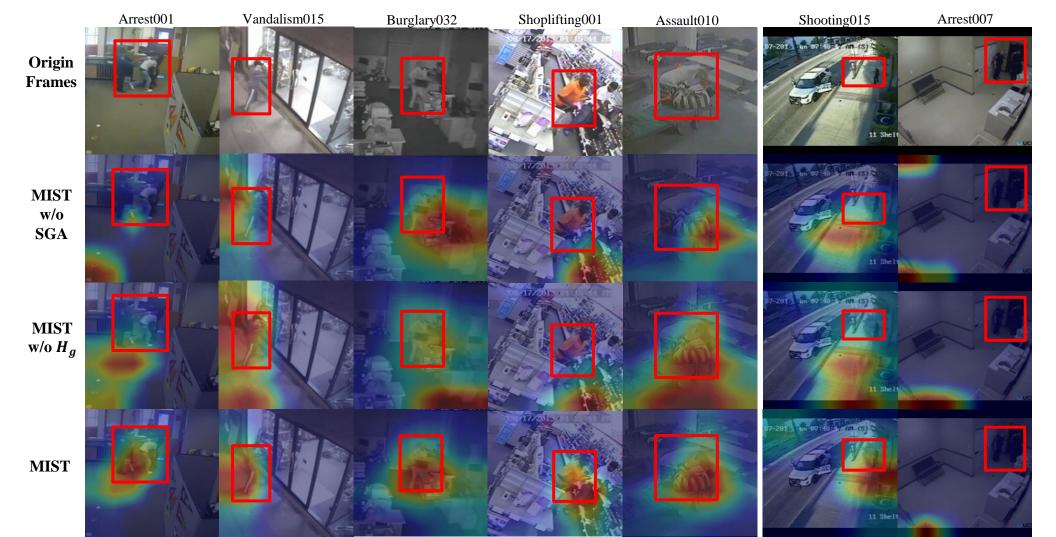
Table 5: Ablation Studies on UCF-Crime with $I3D^{RGB}$. Baseline is the original **I3D** trained with video-level labels [35]. MIST is our whole model. MIST^{w/o PLs} is trained without pseudo labels but with video-level labels. MIST^{w/o H_g} is MIST trained without H_g . MIST^{w/o SGA} is trained without the self-guided attention module).



Project Page

19

Spatial Explanation / Visualization on UCF-Crime



Speed and Complexity

Model	#Params	Speed (FPS)	FLOPs (MAC)
MIST-I3D	31M	324.46	45.68G
MIST-C3D	85M	197.10	39.26G
Zhong-C3D[35]	78M	130.04	386.2G

Table 6: Speed and computational complexity comparisons with Zhong *et al.* [35].

Demo

Future works

• •

- Cooperate with Label Noise Learning / Filtering
- The better alternative for two parts of MIST
- Better dataset [Clear Anomaly Definition, High Resolution...]

Project Page

Thanks for listening!

Project Page https://kiwi-fung.win/2021/04/28/MIST/

